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High Frequency Hall Current Instability

K. Lee, C. F. Kennel, J. M. Kindel

In the auroral zone, VLF hiss observation is a common feature

of magnetic substorms. Quite a few years ago Buneraan (1963) and

Farley (1963) had found that long wavelength electrostatic waves ,.

are unstable in the E region of the ionosphere when the relative : .

drift between the ions and, electrons exceeds :the ion .thermal speed. _

Jo explore whether or not -"this., Hall current electrbjet instability

might also generate hiss at VLF frequencies, we have extended their

work to shorter wavelengths and higher frequencies. For shorter •

wavelength modes, electron Debye, length corrections can no longer be

neglected and the dispersion relation therefore becomes density '••

dependent. v :.;:: • : . .

We have assumed the following parameters: : ; .

B=.5 '^«^ J 5 j JIE= ££x /0 5£C~' ; _Tlx= /. txl'O SEC'1 foe

T- -

We have chosen the magnetic field to be .5 gauss so that pur

calculation will be applicable, to the auroral region. Jl£and

are the electron and ion cyclotron frequencies respectively,, r NO has

been assumed to be the only ion species^ We have :used -Farley's •'".

temperature and collision frequencies , to facilitate comparison. '"'.

with his calculation. We realize this temperature is low for :the

auroral zone. We have made some .calculations with T=460°IC and have ,

found no significant changes in the results.
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The basic equations are the kinetic equations with particle

conserving Krook collision operator for electrons and ions

££% V- V{*+ £_ ( § +• ¥_*A Y.Vvf - - XT
Jt Wy \ c

+ % * & " ] . V, f~- - Ve* if - M
C

and Poisson's equation -

» £ F. - .-••• .V,,. ^ ;
The linearized kinetic equation can be " -f purler transformed and the

perturbed distribution function can be solved by orbit integration

(Stix, 1962; Rosenbluth, 1965) . In this calculation there is an

applied electric field leading to CE/B drift in the orbits. The

perturbed distributions can then be substituted into Poissoh's

equation to get a dispersion relation °-

/

-\ .

= 2 /"'
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Since j^J^ the orbit integration for the ions reduces those for

straight line orbits and the ion contribution to the dispersion relation

is independent of the magnetic field. If we assume K|(=0 and UJ « Jl£

the dispersion relation reduces to

.
0 = / < " - / - + 7 < a ± ( K«*> + ( I -

^ - - * . - , - i i - n i
_ . • • ' . • - .- a *^- - •

In the long wavelength approximation K ^ p can be neglected, I — fo

becomes jjf , and the dispersion relation reduces to Farley's for K^O.

The roots of the dispersion relation have been solved numerically

by contour integration. This is a .standard application of well known

consquences of Cauchy's residue theorem. We will not go into a ' * . . •

discussion of the method here. For an illuminating discussion of
s ' ' • - '

the method, see McCune and Fried (1967).

Figures (1), C2) i and (3) illustrate the results of our, calcula-
* . . ••

tion. Figure (1)' shows the change of growth rate with variation- in.

electron density. (1° the auroral zone the electron density can

vary from quiet to disturbed times by a factor of more than a . '

hundred.) The growth rate and oscillation frequency were normalized

to the geometric mean gyrofrequency in our calculation but we have

included a scale in kiloHertz for convenience of interpretation. For

small drifts, only long wavelength modes will be unstable. ^Therefore,

we chose a large value of V\ in the direction of the propagation vector

K, Ji'Vj/KAT33, to study the growth rate's dependence on electron

density. In the low frequency region the curves show' that electron

Debye length correction is unimportant, in agreement with Farley's

assumption. However, as the electron density of the plasma is increased,
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the range of frequency of unstable nodes also increases. The most

rapidly growing mode shifts to higher frequency with increasing

density* There is then a density tlu-eshold for destabilizing higher

frequency modes; for a value of electron density greater than

1 X 10 cm" , the range of unstable modes includes the geometric

mean gyrofreqiiency. At this high density the geometric mean

gyrofrequency is just the lower hybrid frequency. In general, the

upper cutoffs of unstable frequencies lie near but above the density

dependent lower hybrid frequency (~^ys. - op-"*/Til) at a11 densities.

Figure (2) illustrates the change in growth rate due to variation

of the value of V, projected upon the propagation vector. The

results of figure (1) indicates that to generate high frequency waves,

a large electron density would be required. For this reason we have

chosen N =3.5 X 10 cm" . This is a reasonable value for the auroral
t '

electrojet during a magnetic substorm. The result of figure (2)

indicates that for a factor 2 increase in drift speed, from 1.5A.

to 3.0A. the range of unstable frequency increases rapidly to include

frequencies above the geometric mean gyrofrequency, and the most

rapidly growing mode shifts to near the geometric mean gyrofrequency.
• *

In figure (3) we have cast our results in a form which may

perhaps be useful for backscattering experiments. The dotted curves

on the graph represent the normalized phase speed of unstable waves

as a function of normalized wavelength for the two indicated values

of K/V./KA . When the wave stabilizes, the dotted curve ends. The

phase speed has been defined as W
R/KA, where WR is the real part of

the complex frequency. The solid curve on the graph is a plot of the

critical JC-V. /KA for Instability against wavelength. Drifts above
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the solid curve are unstable. A scale representing the corresponding

radar frequency for backscattering experiments has been added for

convenience.

From a family of such dotted phase speed curves, a polar plot

of angular distribution of phase speeds relative to the current

direction can be obtained. The solid curve enables us to determine

the angle relative to the current at which the wave stabilizes. In

the upper left hand corner are two examples of such polar plots.

The polar plots correspond to a relative drift of 3A- between the

electrons and ions in the horizontal direction. One feature of the

polar plots is that the angular distribution of phase speed becomes

more isotropic for higher frequency backscattering experiment. On the

other hand, for lower frequency backscattering experiments, the cone

of angles of unstable waves is larger. For the 300 MHz case, the

phase speed varies by a factor-bf about two as the direction of.

propagation vector changes from a direction parallel to the drifting

electrons to the extreme limit of the cone. This would then indicate

that a 300 MHz radar pointing at different directions relative to

the electron drift will observe different Dopplar shifted frequencies.

This prediction disagrees with observations of the equatorial

electrojet (Bowles et al, 1963; Cohen and Bowles, 1967). This

discrepency between prediction and observation may be due to the

effects of nonlinear saturation of the instability. Nevertheless,

a constant Doppler shift in frequency cannot be predicted on the

basis of linear calculation.

The instability mechanism of Bunemari (1963) and Farley (1963)

has been well received as a possible explanation for the observations
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of long wavelength backscattering in the equatorial electrojet. In

addition, a significant number of auroral backscattering experiments

have features which of all the proposed mechanisms can best be ..

interpreted in terms of the Buneman-Farley instability (Moorcroft,
»

1966; and Forsyth, 1968). An interesting feature of the present

calculations is that a small increase of a factor 2 .in the electron

drift shifts the most unstable wave from the long wavelength region,

appropriate to most backscattering experiments, to short wavelengths

and high frequencies near the geometric mean gyrofrequency. This fact

immediately suggests that the high frequency component may have to

be taken into account in calculations of the turbulent saturation of

the Hall current instability driven beyond threshold,

- Our calculations also indicate that, unless nonlinear effects

prevent V. /A from approaching 3, VLF electrostatic hiss and short

wavelength "backscatter ought to* accompany strong Hall currents and.

long wavelength backscatter. On the other hand, when V . /A j is

small, long wavelength backscatter could be observable without hiss.

Thus hiss, backscatter, and electrojet correlation studies might

prove .interesting.

Finally, we note that Hall currents can generate waves in part

of the frequency band appropriate to auroral VLF hiss, which, assuming

appropriate conversion to electromagnetic waves, might be related to

the apparent correlation of VLF hiss and local auroral electrojet

activity (Harang and Larsen, 1965).
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Figure Captions

Figure 1. Change in growth rate due to variation in electron density

For a fixed value of K-V ,/KA,=3, (K the propagation vector, V,

the relative drift velocity between electrons and ions, and A,

the ion thermal speed), the growth rate Y is plotted against

oscillation frequency for four different values of electron density.

Y and Ct^ are normalized to the geomtric mean gyrofrequency. For

a magnetic field of ,5 gauss an upper scale in kilollertz is shown for

the oscillation frequency. For increasing density, the range of

unstable frequencies increases to include frequencies above the
t-t. .'<

geometric mean gyrofrequency. : '•

Figure 2. Change, in growth rate, due to variation in K-V./KA

For a fixed electron density Nc=3.5 X 10 cm" the growth rate
il . '' . • . •

Y is plotted against oscillation frequency OJ for four different

values of K « V , / K A T . Y and UJR are normalized to V^Atftr, thea 1 i\ . • . . .

geometric mean gyrofrequency. 1£ is the propagation vector, V. is

the relative drift velocity between electrons and ions, and A, is the

ion thermal speed. For a magnetic field of .5 gauss, a corresponding

scale in kiloHertz is shown for the oscillation frequency. The

value of px/TlEn = 15 corresponds to the chosen value of N_ and a

magnetic field of .5 gauss. For an increase of a factor 2 in electron

drift the range of unstable frequencies increases to include frequencies

above the geometric mean gyrofrequency and the fastest growing mode

shifts to high frequency, near the geometric mean gyrofrequency.
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Figure 3. Phase speed and critical value of electron drift as a

function of wavelength

• For fixed temperature T=230°K and electron density N =3.5 X 10 cm"
- *^

the dotted curves on the graph are plots of normalized phase speed

W_/KA of unstable waves versus normalized wavelength for two
K I • 11 •"" - L "• • ' •

different values of K - V . / K A , . The dotted curve ends when the waveo i •

becomes stable. NR=real part of the complex frequency, ^propagation

vector, V,=relative drift velocity between electrons and ions,

A = i o n thermal speed, A=electron thermal speed, and -A-t^electron

cyclotron frequency. A scale representing the corresponding radar

frequency for back scattering experiment is also shown. Also on the

same graph and using the same vertical scale is a plot of critical

K'V./KA, versus normalized wavelength. For various values of JC,

the drift velocities giving K-VJ/KA, values greater than those

of the solid curve, the corresponding waves become unstable. In

the upper corner are polar plots of angular distribution of phase

speed relative to the direction of electron drift for the two indicated

radar .frequencies. The length of the arrows represent the magnitudes

of W /KAT . The relative drift V, between electrons and ions inK 1 o .

the horizontal direction has a magnitude of 3A...
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Change in growth-rate due to variation in electron
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